教案的编写展示了教师对教学资源和教具的合理运用能力,教案帮助教师明确教学目标和学习要求,确保教学的针对性和有效性,以下是有美篇范文网小编精心为您推荐的初中数学教案8篇,供大家参考。
初中数学教案篇1
教学目标:
1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。
2、收集统计在生活中应用的例子,整理收集数据的方法。
3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。
教学过程:
一、课前预习,出示预习提纲:
1、我们学习了哪几种统计图?
2、这几种统计图各有什么特点?
3、概率的知识有哪些?
二、展示与交流
(一)提出问题
1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)
2、师:先独立列出几个你想调查的问题。(写在练习本上)
3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)
4、接着全班汇报交流(师罗列在黑板上)
师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)
(二)收集数据和整理数据
1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。
2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?
(三)开展调查
1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。
2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)
3、全班汇总、整理、归纳各小组数据。(板书)
4、师:分析上面的数据,你能得到哪些信息?
5、师:根据整理的数据,想一想绘制什么统计图比较好呢?
6、师:根据这些信息,你还能提出什么数学问题?
(四)回顾统计活动
1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?
师板书:提出问题——收集数据——整理数据——分析数据——作出决策。
2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)
指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?
3、结合生活中的例子说说收集数据有哪些方法?
(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来
的实例)来说说自己的方法。
(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。
4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?
初中数学教案篇2
一、彻底搞清定义、定理、公理的真正含义
要想让学生写出思路清晰、层次分明的几何证明题的书写过程。首先最关键的一步就是要让学生彻底分清定义、定理、公理的题设和结论,真正理解其真实含义。只有这样,学生才能在以后的证明过程中,正确地利用它来证明相关结论。反之,如果你对定理的内容都没有真正理解,而是含糊其词,是是而非,或者本身就不知道有这样一个定理,那么你在以后的证明过程中,就不能正确地应用这个定理或者就不知道应用这个定理,整个证明过程就会陷入僵局。同时,我们还要让学生把握清楚定理的内涵,不能对定理的理解有模棱两可、含糊其词之感。例如,在学习等腰三角形的“三线合一”这一定理时,有些同学就理解不清,没有真正掌握其含义,甚至自己都感到有些困惑,致使在应用时出现一些小错误。我们都知道这个定理的正确用法是,在知道一个三角形是等腰三角形的大前提下,
其中“顶角的平分线”、“底边上的高”、“底边上的中线”三者知道一个,就可以得到另外两个结论。而有些没有真正理解其含义的同学就这样写道:(如图)
在△abc中
∵ab=ac,ad⊥bc,bd=cd∴ad平分∠bac
显然,这是不恰当的。原因就在于没有真正理解等腰三角形“三线合一”这一定理的内涵,应该去掉“的任一个。
二、加强三种几何语言的教学,特别是符号语言
几何语言包括三种不同形式的语言,即文字语言、图形语言、符号语言。对定理、公理的教学,我们老师不仅要让学生掌握定理对应的三种语言,还要培养学生对三种语言的转换能力。
由于三种语??
ad⊥bc”和“bd=cd”中的不同特点,在教学中各自发挥的作用也不相同。在三种语言中,符号语言是几何初学者最难掌握的一种,也是逻辑推理必备的能力基础,因为考试中的证明题要用符号语言来体现。
我们老师在教学中如何让学生掌握好符号语言呢?在教学某一定理时,首先要让学生在理解的基础上,结合图形能用自己的语言进行描述再引导学生如何用符号语言进行“翻译”。的点到角的两边的距离相等”这一定理时。
(即文字语言),然后
例如在教学“角平分线上首先,我们老师要引导学生用什么样的方法证明这一定理,然后引导学生用自己的话表述这一性质,最后训练学生如何用符号来描述这一定理。这一定理的题设中,关键的两点即“角平分线”和“角平分线上的点到角的两边的距离”,如何用符号表示呢呢?(如图),
?结论中的“相等”,又如何用符号表示
题设中的“两点”可以这样用符号表示:∠1=∠2,cd⊥ao,ce⊥bo,结论中的“相等”可表示为:cd=ce
如果我们以后用到这一性质时,就可以这样写了:∵∠1=∠2,cd⊥ao,ce⊥bo∴cd=ce
三、理清思路,做到层次分明
我们老师在批改学生的证明题时,常常会发现这样的现象:为了证明某一结论,假设需要通过两步“同等身份”的推理,
才能得出最后的结论,个别学生在证明时,往往两步的推理互相穿插,第一步证明的推理在第二步中有出现,第二步的推理在第一步中也有体现。也就是说,思路不清,条理不清晰。出现这种现象的原因还是在书写过程之前,思路不清、层次不分明。针对这种现象,我们老师要帮助学生细细分析清楚后,再让学生书写过程。例如有这样一道证明题:(如图)
已知:如图,矩形abcd的对角线ac、bd相交于点o,be‖ac,ce‖bd。
求证:四边形obec是菱形。
针对这一题目,引导学生通过分析后,发现这个题目只要证明“两大块”就行了,即证“ob=oc”和“四边形
obec为平行四边形”,然后再引导学生这“两大块”又分别怎样用符号语言表述就可以了。当然,这“两大块”的证明不分先后。通过这样的分析后,学生在书写时就不会出现证明“ob=oc”时出现“be‖ac”这样的“不速之客”了。
四、掌握几何证明题常用的分析方法
几何证明题常用的分析方法有综合法和分析法,
另外还有一种就是分析法和综合法的结合使用。那么我们在证明某一结论时,到底用上述三种方法的哪一种呢?这要根据具体的问题,具体的情况进行决定。有时一个待证的结论分析法也可以,综合法也可以,都比较容易找到解决问题的思路,但有时一个待证的结论,这两种方法都不奏效,都不容易找到解决问题的方法,这时我们不妨把这两种方法结合起来使用,或许能找到“突破点”。因此,我们老师要让学生在解决证明题的过程中,自己要注意总结和反思,灵活掌握上述的三种方法。只有这样才能在寻求解决问题方案的过程中游刃有余。
五、多鼓励学生
刚刚学习几何证明题书写的学生,在书写的过程中肯定要或多或少地出现这样或那样的错误。我们老师在对待这一问题时,不要急躁,要耐心地对学生进行讲解和引导,多鼓励、多表扬他们。不理想的推理步骤要不断改进,同时引导学生自己多领悟多反思一下。这样,学生就不会失去这方面的信心,他们会做得越来越好。
总之,对学生几何证明题书写的教学,我们老师要有足够的耐心,采取不同的教学思路和方法,引导和鼓励学生循序渐进地掌握正确书写的方法和技巧。只有这样,学生才能书写出思路清晰、层次分明的几何证明题书写过
初中数学教案篇3
教学目标:
1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题.
2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律.
教学重点:
使学生准确、熟炼、灵活地运用切线的判定方法及其性质.教学难点:学生对题目不能准确地进行论证.证题中常会出现不知如何入手,不知往哪个方向证的情形.
教学过程:
一、新课引入:
我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题.
二、新课讲解:
实际上在几何证明题中,我们更多地将切线的判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤.p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线.
分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形.所以辅助线应该是连结oc.只要证od⊥cd即可.亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果.而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等.
∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证.证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴.p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切.
分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点.这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切.题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.
请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的.
练习??
p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切.分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况.这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,问题便得到解决.证明:连结de,作df⊥ob,重足为f.p.111中2.已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d.求证:ac与⊙o相切.
分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况.辅助线的方法同第1题,证法类同.只不过要针对本题特点还要连结oa.从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明.证明:连结od、oa,作oe⊥ac,垂足为e.同学们想一想,在证明oe=od时,还可以怎样证?
(答案)可通过“角、角、边”证rt△odb≌rt△oec.
三、新课讲解
:为培养学生阅读教材的习惯让学生阅读109页到110页.从中总结出本课的主要内容:
1.在证题中熟练应用切线的判定方法和切线的性质.
2.在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握.
(1)公共点已给定.做法是“连结”半径,让半径“垂直”于直线.
(2)公共点未给定.做法是从圆心向直线“作垂线”,证“垂线段等于半径”.
四、布置作业
1.教材p.116中8、9.2.教材p.117中2.
初中数学教案篇4
教学目标:
1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.
3、会求函数值,并体会自变量与函数值间的对应关系.
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.
5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.
教学重点:了解函数的意义,会求自变量的取值范围及求函数值.
教学难点:函数概念的抽象性.
教学过程:
(一)引入新课:
上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.
解:1、y=30n
y是函数,n是自变量
2、n是函数,a是自变量.
(二)讲授新课
刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.
例1、求下列函数中自变量x的取值范围.
(1)(2)
(3)(4)
(5)(6)
分析:在(1)、(2)中,x取任意实数,与都有意义.
(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.
同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.
第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零.的被开方数是.
同理,第(6)小题也是二次根式,是被开方数,
小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使函数成立的自变量的取值范围.二次根式的问题也与次类似.
但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.
例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.
(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;
(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.
解:(1)
(x是正整数,
(2)若变速车的辆次不小于25%,但不大于40%,
则收入在1225元至1330元之间
总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.
对于函数,当自变量时,相应的函数y的值是.60叫做这个函数当时的函数值.
例3、求下列函数当时的函数值:
(1)————(2)—————
(3)————(4)——————
注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.
(二)小结:
这节课,我们进一步地研究了有关函数的概念.在研究函数关系时首先要考虑自变量的取值范围.因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值.另外,对于反映实际问题的函数关系,要具体问题具体分析.
作业:习题13.2a组2、3、5
今天的内容就介绍到这里了。
初中数学教案篇5
应用二元一次方程组——鸡兔同笼
教学目标:
知识与技能目标:
通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题。初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:
经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:
1、进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识。
2、通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:
经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:
确立等量关系,列出正确的二元一次方程组。
教学流程:
课前回顾
复习:列一元一次方程解应用题的一般步骤
情境引入
探究1:今有鸡兔同笼,
上有三十五头,
下有九十四足,
问鸡兔各几何?
“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?
(1)画图法
用表示头,先画35个头
将所有头都看作鸡的,用表示腿,画出了70只腿
还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿
四条腿的是兔子(12只),两条腿的是鸡(23只)
(2)一元一次方程法:
鸡头+兔头=35
鸡脚+兔脚=94
设鸡有x只,则兔有(35-x)只,据题意得:
2x+4(35-x)=94
比算术法容易理解
想一想:那我们能不能用更简单的方法来解决这些问题呢?
回顾上节课学习过的二元一次方程,能不能解决这一问题?
(3)二元一次方程法
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(1)上有三十五头的意思是鸡、兔共有头35个,
下有九十四足的意思是鸡、兔共有脚94只。
(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;
鸡足有2x只;兔足有4y只。
解:设笼中有鸡x只,有兔y只,由题意可得:
鸡兔合计头xy35足2x4y94
解此方程组得:
练习1:
1、设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15
2、小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.
三、合作探究
探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?
题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?
找出等量关系:
解:设绳长x尺,井深y尺,则由题意得
x=48
将x=48y=11。
所以绳长4811尺。
想一想:找出一种更简单的创新解法吗?
引导学生逐步得出更简单的方法:
找出等量关系:
(井深+5)×3=绳长
(井深+1
解:设绳长x尺,井深y尺,则由题意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以绳长48尺,井深11尺。
练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙。设甲速为x米/秒,乙速为y米/秒,则可列方程组为(b)。
归纳:
列二元一次方程解决实际问题的一般步骤:
审:审清题目中的等量关系。
设:设未知数。
列:根据等量关系,列出方程组。
解:解方程组,求出未知数。
答:检验所求出未知数是否符合题意,写出答案。
四、自主思考
探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板用完?
解:设做竖式纸盒x个,横式纸盒y个。根据题意,得
x+2y=1000
4x+3y=2000
解这个方程组得x=200
y=400
答:设做竖式纸-一秘§.1mi.net 盒200个,横式纸盒400个,恰好使库存的纸板用完。
练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?
解:设做竖式纸盒x个,做横式纸盒y个,根据题意
y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完。
归纳:
五、达标测评
1、解下列应用题
(1)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?
解:设4分邮票x张,8分邮票y张,由题意得:
4x+8y=6800①
y-x=40②
所以,4分邮票540张,8分邮票580张
(2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天
的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成
分析:由于工作总量未知,我们将其设为单位1
晴天一天可完成
雨天一天可完成
解:设晴天x天,雨天y天,工作总量为单位1,由题意得:
总天数:7+10=17
所以,共17天可完成任务
六、应用提高
学校买铅笔、圆珠笔和钢笔共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?
分析:铅笔数量+圆珠笔数量+钢笔数量=232
铅笔数量=圆珠笔数量×4
铅笔价格+圆珠笔价格+钢笔价格=300
解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组:
将②代入①和③中,得二元一次方程组
4y+y+z=232④
0.6×4y+2.7x+6.3z=300⑤
解得
所以,铅笔175支,圆珠笔44支,钢笔12支
七、体验收获
1、解决鸡兔同笼问题
2、解决以绳测井问题
3、解应用题的一般步骤
七、布置作业
教材116页习题第2、3题。
x+y=35
2x+4y=94
x=23
y=12
绳长的三分之一-井深=5
绳长的四分之一-井深=1
-y=5①
①-②,得
-y=1②
-y=5①
-y=5①
-y=5①
x=540
y=580
y-x=3②
x=7
y=10
x+y+z=232①
x=4y②
0.6x+2.7y+6.3z=300③
x=176
y=44
z=12
一、背景知识
?有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了"做一做"等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。
二、教学目标
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号"t;"">""∵""∴"写出表示推理过程中简单的因果关系。
三、教学重点与难点
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
四、教学准备
多媒体课件
五、教学设计
(一)交流对话,探究新知
1、说一说
(多媒体显示)某一天我们5个城市的最低气温从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。
比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")
广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?
(3)温度的高低与相应的数在数轴上的位置有什么?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功
1、练一练(师生共同完成例1后,学生完成随堂练习1)
例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"t;"号连接。(师生共同完成)
分析:本题意有几层含义?应分几步?
要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
随堂练习: p19 t1
2、做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7②-6和-1③-6和-36④-和-1.5
(2)求出图中各对数的绝对值,并比较它们的大小。
(3)由①、②从中你发现了什么?
(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)
要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
在学生讨论的基础上,由学生总结得出有理数大小的比较法则。
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
3、师生共同完成例2后,学生完成随堂练习2、3、4。
例2比较下列每对数的大小,并说明理由:(师生共同完成)
(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|
分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。
注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。
两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。
思考:还有别的方法吗?(分组讨论,积极思考)
4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
练一练:p19 t2、3、4
5、考考你:请你回答下列问题:
(1)有没有的有理数,有没有最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。
(4)若a>0,bt;0,at;|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)
(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)
6、议一议,谈谈本节课你有哪些收获
(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"t;"(或">")连接,这种方法在比较多个有理数大小时非常简便。
六、布置作业:p19 a组、b组
基础好的a、b两组都做
基础较差的同学选做a组。
以上就是一秘为大家整理的10篇《人教版初中数学教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在一秘。
初中数学教案篇6
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:
①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:
(1)这个图案有什么特点?
(2)它可以通过什么“基本图案”,经过怎样的平移而形成?
(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
初中数学教案篇7
教学目标:
1、 在现实情境中理解线段、射线、直线等简单图形(知识目标)
2、 会说出线段、射线、直线的特征;会用字母表示线段、射线、直线(能力目标)
3、 通过操作活动,了解两点确定一条直线等事实,积累操作活动的经验,培养学生的兴趣、爱好,感受图形世界的丰富多彩。(情感态度目标)
教学难点:了解“两点确定一条直线”等事实,并应用它解决一些实际问题
教 具: 多媒体、棉线、三角板
教学过程:
情景创设:观察电脑展示图,使学生感受图形世界的丰富多彩,激发学习兴趣。
如何来描述我们所看到的现象?
教学过程:
1、 一段拉直的棉线可近似地看作线段
师生画线段
演示投影片1:①将线段向一个方向无限延长,就形成了______
学生画射线
②将线段向两个方向无限延长就形成了_______
学生画直线
2、 讨论小组交流:
① 生活中,还有哪些物体可以近似地看作线段、射线、直线?
(强调近似两个字,注意引导学生线段、射线、直线是从生活上抽象出来的)
②线段、射线、直线,有哪些不同之处, 有哪些相同之处?
(鼓励学生用自己的语言描述它们各自的特点)
3、 问题1:图中有几条线段?哪几条?
“要说清楚哪几条,必须先给线段起名字!”从而引出线段的记法。
点的记法: 用一个大写英文字母
线段的记法:①用两个端点的字母来表示
②用一个小写英文字母表示
自己想办法表示射线,让学生充分讨论,并比较如何表示合理
射线的记法:
用端点及射线上一点来表示,注意端点的字母写在前面
直线的记法:
① 用直线上两个点来表示
② 用一个小写字母来表示
强调大写字母与小写字母来表示它们时的区别
(我们知道他们是无限延长的,我们为了方便研究约定成俗的用上面的方法来表示它们。)
练习1:读句画图(如图示)
(1) 连bc、ad
(2) 画射线ad
(3) 画直线ab、cd相交于e
(4) 延长线段bc,反向延长线段da相交与f
(5) 连结ac、bd相交于o
练习2:右图中,有哪几条线段、射线、直线
4、 问题2 请过一点a画直线,可以画几条?过两点a、b呢?
学生通过画图,得出结论:过一点可以画无数条直线
经过两点有且只有一条直线
问题3 如果你想将一硬纸条固定在硬纸板上,至少需要几根图钉?
为什么?(学生通过操作,回答)
小组讨论交流:
你还能举出一个能反映“经过两点有且只有一条直线”的实例吗?
适当引导:栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线。建筑工人在砌墙时,经常在两个墙角分别立一根标志杆,在两根标志杆之间拉一根绳,沿这根绳就可以砌出直的墙来。
5、 小结:
① 学生回忆今天这节课学过的内容
进一步清晰线段、射线、直线的概念
② 强调线段、射线、直线表示方法的掌握
6、 作业:①阅读“读一读” p121
②习题4的1、2、3。4作为思考题
初中数学教案篇8
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容 .
2.了解平均数的意义,会计算一组数据的平均数 .
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .
(二)能力训练点
培养学生的观察能力、计算能力 .
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯 .
2.渗透数学来源于实践,反地来又作用于实践的观点 .
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .
重点·难点·疑点及解决办法
1.教学重点:平均数的概念及其计算 .
2.教学难点:平均数的简化计算 .
3.教学疑点:平均数简化公式的应用,a如何选择 .
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
这节课我们首先来学习平均数.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .
2.平均数的概念及计算公式
一般地,如果有n个数 .
那么 ①
叫做这n个数的平均数, 读作“x拨” .
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的'意义 .
3.平均数计算公式①的应用
例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温 .
让学生动手计算,以巩固平均数计算公式(一名学生板演)
教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .
例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
计算它们的平均质量 .(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .
讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .
3.推导公式②
一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,
那么 ,
因此,
即 ②
为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)
课堂练习:
教材p148中~p149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .
2.求n个数据的平均数的公式① .
3.平均数的简化计算公式② .这个公式很重要,要学会运用 .
方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .
八、布置作业
教材p153中1、2、3、4 .
会计实习心得体会最新模板相关文章: