周密的教案可以使学生更清晰地把握知识点的逻辑结构,教案可以帮助教师更好地规划教学目标和内容,确保教学质量,有美篇范文网小编今天就为您带来了苏教版四年级数学下教案6篇,相信一定会对你有所帮助。
苏教版四年级数学下教案篇1
教学目标:
1.通过教学使学生认识各种计算工具,对算盘和计算器有一定的了解。
2.培养学生学习数学的兴趣。
3.使学生感受生活中处处有数学。
教学重难点:
认识算盘、计算器,计算器的使用。
教学关键:
能够自学了解算盘与计算器的使用方法。
教具准备:
算盘、计算器。
教学过程:
课前参与:查找有关计算工具的资料,准备一下,把你所认识的计算工具用最清楚的方式介绍给大家。
一、计算工具的历史
(一)课前参与反馈(学生介绍计算工具)
前面我们了解了数是怎样产生的,随着数的产生,就会出现数的计算,为了计算方便,人们发明了各种各样的计算工具,课前同学们进行了有关资料的查询,谁来给大家介绍一下你所了解的计算工具?
学生发言。
(二)老师根据学生介绍的情况补充介绍计算工具的发展历史
计算工具的源头可以上溯至20xx多年前的春秋战国时代,古代中国人发明的算筹是世界上最早的计算工具。在大约六、七百年前,中国人发明了更为方便的算盘,并一直沿用至今。许多人认为算盘是最早的数字计算机,而珠算口诀则是最早的体系化的算法。
计算尺的出现,开创了模拟计算的先河。从冈特开始,人们发明了多种类型的计算尺。直到20世纪中叶,计算尺才逐渐被袖珍计算器取代。
从17世纪到19世纪长达两百多年的时间里,一批杰出的科学家相继进行了机械式计算机的研制,其中的代表人物有帕斯卡、莱布尼茨和巴贝奇。这一时期的计算机虽然构造和性能还非常简单,但是其中体现的许多原理和思想已经开始接近现代计算机。
最古老的计算工具:算筹
我国春秋时期出现的算筹是世界上最古老的计算工具。计算的时候摆成纵式和横式两种数字,按照纵横相间的原则表示任何自然数,从而进行加、减、乘、除、开方以及其它的代数计算。负数出现后,算筹分红黑两种,红筹表示正数,黑筹表示负数。这种运算工具和运算方法,在当时世界上是独一无二的。
中国人发明算盘
随着计算技术的发展,在求解一些更复杂的数学问题时,算筹显得越来越不方便了。于是在大约六、七百年前,中国人发明了算盘,它结合了十进制计数法和一整套计算口诀并一直沿用至今,被许多人看作是最早的数字计算机。
一般的算盘大都是木制的,算珠也是木制的。后来发展到用铜等金属制作算盘。高档的算盘用玉制作。算珠除了圆柱形的算珠,也有截面为菱形的算珠。的算盘有几米长,最小的只有几厘米。
算盘可以进行加减乘除各种运算。时至今日,用算盘计算加减法的速度毫不逊色于计算器。
算盘上粒粒算珠的上下左右移动,可以使计算者直观的看到加减乘除的'运算过程。算珠互相碰撞及算珠与横档的碰撞发出的有节奏的声音,形成一首美妙的“计算进行曲”。计算者从声音中体会到计算的愉快。这些愉快的感觉反映到俗语中,“三下五去二”、“管它三七二十一”,“劈里拍拉的算账”。
利用算盘进行计算时,不仅要用手指不断的拨动算珠,还要用眼睛看数,同时要不停的动脑筋。这是非常典型的手脑并用,对提高智力,开发右脑是一种好方法。有学者指出,学珠算练手指是开发智力的有效途径。
由于用算盘计算有这么多的优点,所以这个在中国已使用了二千多年的计算工具,现在在世界各地仍得到广泛应用。在受中国文化影响比较深的日本、韩国、东南亚,珠算技术的传授及普及教育一直受到重视。日本的小学生把读书、写字、打算盘列为三大基本功,日本的珠算教育在世界上处于地位。日本全国的算盘学校高达35,000所。韩国的珠算教育近年来也取得了长足的发展。
即使远在南美洲的巴西,也成立了珠算联盟,每年进行4次珠算考核和二次珠算大赛。北美洲的墨西哥有全国珠算支部,美国有珠算教育中心,有1,000多所学校接受珠算教育,算盘正成为美国的一种数学教学工具。
计算机
1946年美国宾夕法尼亚大学经过几年的艰苦努力,研制出世界上第一台电子计算机──埃尼阿克(eniac)。随着科学技术的进步,计算机不断更新。目前,速度快的计算机1秒钟能计算几十万亿次。计算机的大小也发生了很大的变化,世界上第一台计算机大约有一间房间那么大,现在有台式电脑、笔记本电脑,还有掌上电脑。
计算机发展史:
■1946年发生了人类历一件划时代的大事人类第一台电子计算机诞生了。
■以使用电子管为特点的第一代电子计算机在20世纪40年末和50年代初获得重大发展。
■第二代电计算机于20世纪50年代中期间问世以晶体管代替电子管并增加浮点运算。
■19xx年ibm360系统问世它成为使用集成电路的第三代电子计算机的代表。
■使用超大规模集成电路的第四代计算机。
■第五代电子计算机被称为智能计算机。
■模仿人类大脑功能的神经计算机已经开发成功它标志着电子计算机的发展进入第六代。
二、算盘和计算器的认识与使用
1.算盘。
刚才同学们介绍了许多的计算工具,其中算盘是我们中国所特有的,现在在许多地方还能见到。你认识算盘吗?对算盘有哪些了解?
(1)算盘各部分名称
算盘的长方形的框内装有一根横梁,梁上钻孔镶上小棍数根,称为档。每根上穿一串珠子,叫算盘子儿或算珠。
常见的算盘是两颗算珠在横梁上,每颗代表五;五颗在横梁下,每颗代表一。计算时按规定的方法拨动算盘子儿而得出计算结果。
在拨数时要先定好数位,规定哪档是个位,然后再拨数。(规定从右往左数第三档为个位)
拨出一个数,说一说这表示多少?
(2)两种不同的算盘:
出示两种不同的算盘(书23页图):
观察有什么不同。
左边的算盘是中国算盘,上面有两颗珠子,每颗代表5。
后来算盘发展到日本,逐渐演变成右边这样,上面变成了一颗珠子。
原因是:原来是中国采用的是16进制,满15进1,所以算盘每档上是15;进入日本后,采用的是十进制,所以算盘的上面剩下1颗珠子。
(3)算盘的两种功能:计算和计数
2.计算器。
(1)计算器的使用非常的广泛,你认识计算器吗?
出示一个计算器,你能说说每个键的功能吗?
显示屏、时间键、日期键、清除键、开关及清除屏键、存储运算键、括号键、数字键、运算符号键、等号键等。
(2)让学生看课本自学,边看自己的计算器边看书,然后小组交流。
(3)计算器的使用与算盘相比有什么优势?
(4)全班看计算器,师生对口令。
三、总结
计算器的使用为我们带来了许多的方便,通过使用计算器,你觉得计算器如果具备哪些功能就更好了?不妨我们去找一找是否有具备这种功能的计算器,该如何使用,更希望同学们能利用自己的聪明才智发明出更好的计算工具。
四、作业:
1.继续查找有关计算工具的资料。(有兴趣的同学,如果能根据计算工具的发展史将其罗列就更好了。)
2.了解计算器的其他功能
苏教版四年级数学下教案篇2
教学内容
一元二次方程概念及一元二次方程一般式及有关概念. 教学目标
2
了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?应用一元二次方程概念解决一些简单题目.
1.通过设臵问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念性的题目.
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键
1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 2.难点关键:通过提出问题,建立一元二次方程的数学模型,?再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程
一、复习引入
学生活动:列方程. 问题(1)古算趣题:“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。 有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。 借问竿长多少数,谁人算出我佩服。
如果假设门的高为x?尺,?那么,?这个门的宽为_______?尺,长为_______?尺, ?根据题意,?得________. 整理、化简,得:__________. 二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们次数是几次? (3)有等号吗?还是与多项式一样只有式子? 老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)?都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.
2
一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
2
一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
2
分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.
解:略
注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.
2
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
22
分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式. 解:略
三、巩固练习
教材 练习1、2
补充练习:判断下列方程是否为一元二次方程?
(1)3x+2=5y-3 (2) x=4 (3) 3x-2
2
22
52 2 2
=0 (4) x-4=(x+2) (5) ax+bx+c=0 x
四、应用拓展
22
例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.
2
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17?≠0即可.
22
证明:m-8m+17=(m-4)+1
2
∵(m-4)≥0
22
∴(m-4)+1>0,即(m-4)+1≠0
∴不论m取何值,该方程都是一元二次方程.
2
? 练习: 1.方程(2a—4)x—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为
一元一次方程?
/4m/-4
2.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程 五、归纳小结(学生总结,老师点评) 本节课要掌握:
2
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用. 六、布臵作业
第2课时 21.1 一元二次方程
教学内容
1.一元二次方程根的概念;
2.?根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目. 教学目标
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题. 提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题. 重难点关键
1.重点:判定一个数是否是方程的根;
2.?难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程
一、复习引入
学生活动:请同学独立完成下列问题.
2
问题1.前面有关“执竿进屋”的问题中,我们列得方程x-8x+20=0
列表:
问题2列表:
3
老师点评(略) 二、探索新知 提问:(1)问题1中一元二次方程的解是多少?问题2?中一元二次方程的解是多少? (2)如果抛开实际问题,问题2中还有其它解吗?
22
老师点评:(1)问题1中x=2与x=10是x-8x+20=0的解,问题2中,x=4是x+7x-44=0的解.(2)如
果抛开实际问题,问题2中还有x=-11的解.
一元二次方程的解也叫做一元二次方程的根.
2
回过头来看:x-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
2
例1.下面哪些数是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
2
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的两根.
2
例2.若x=1是关于x的一元二次方程a x+bx+c=0(a≠0)的一个根,求代数式(a+b+c)的值
2 2
练习:关于x的一元二次方程(a-1) x+x+a-1=0的一个根为0,则求a的值
点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.
例3.你能用以前所学的知识求出下列方程的根吗?
222
(1)x-64=0 (2)3x-6=0 (3)x-3x=0
分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义. 解:略
三、巩固练习
教材 思考题 练习1、2.
四、归纳小结(学生归纳,老师点评) 本节课应掌握:
(1)一元二次方程根的概念;
(2)要会判断一个数是否是一元二次方程的根;
(3)要会用一些方法求一元二次方程的根.(“夹逼”方法;平方根的意义) 六、布臵作业
苏教版四年级数学下教案篇3
课题:1。1~1。4复习(初二上数学)b版
课型:复习
学习目标(学习重点):
1.了解轴对称与轴对称图形,会准确画出轴对称图形,找出对称轴、对称点等.
2.能熟练应用轴对称的性质.
3.复习线段的垂直平分线,角平分线的性质及推论,并能加以灵活运用.
例题:
例1.(1)下列说法中,正确的个数是()
①轴对称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言.
a.1个b.2个c.3个d.4个
(2)如图在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球a,b。若击打小球a,经过球台边的反弹后,恰好击中小球b,那么小球a击出时,应瞄准球台边上的点()
a.p1b.p2c.p3d.p4
例2.作图题(1)作出图1中△abc关于直线l的对称图形;
(2)如图2,∠bac=60°,点p在边ac上,试用带刻度的直尺和量角器,在∠bac内部找一点o,使点o到a、p的距离相等,且到∠bac的两边的距离相等.
图1图2
例3.已知:如图,△abc中,△abc的外角平分线ad,交bc的垂直平分线于d点,de⊥ab于点e,df⊥ac于点f,
(1)求证:be=cf;
(2)若ab=15,ac=7,求ae的长.
课后续助:
1.点a和点b关于直线l对称,对直线l任意一点p,必有pa____pb
2.对称图形________有一条对称轴,________有两条对称轴,________有四条对称轴,_______有无数条对称轴。(各填上一个图形即可).
3.到三角形的三个顶点的距离相等的点是___________的交点.到三角形的三边的距离相等的点是___________的交点.
4.如果△abc与△a/b/c/关于直线l对称,且∠a=500,∠b/=700,那么
∠c/=____.
5。如图,点p在∠aob内,pm⊥oa于m,pn⊥ob于n,且pm=pn,连结op,则op是________________.依据是_______________________________.
6.如图,ab=ac,ac的垂直平分线交bc于d,垂足为e,
若ab=10,△abd的周长为23,求△abc的周长.
7.如图,有一个三角形纸片abc,ab=10cm,bc=7cm,ac=6cm,沿过点b的直线折叠这个三角形,使顶点c落在ab边上的点e处,折痕为bd,求△aed的周长.
8.如图,在△abc中,∠bac=90°,be平分∠abc,de⊥bc于d,de=dc.
求证:bc=ab+ae.
9.如图,在四边形abcd中,bc>ba,ad=cd,
bd平分∠abc,试说明:∠a+∠c=180°.
苏教版四年级数学下教案篇4
[教学目标]
1、认识平行,感知平行线的特征,初步学会画平行线,了解平行线在生活中的应用。
2、培养空间想象能力与联系实际的意识和能力。
3、感受数学的价值,培养学习数学的兴趣。
[教学过程]
一、认识平行
1、初步感知,尝试判断
师;上课一开始,让我们先来看一小段录像(播放录像)
师:录像里的小朋友在干什么啊?生:开窗户。
师:开窗户过程中,这扇窗户在做什么运动呢?
生:平移
师:是的,平移是我们上个学期学过的知识,你们学得很好。我们看,窗户的一条边一开始在这个位置;平移之后,到了这个位置。你知道这条边与这条边的位置之间有什么关系吗?
生:平行
师:你的知识面真广,这节课就让我们一起来学行线。
师:你知道平行线吗?
高老师这里有几幅图,请同学们找一找,哪些图画出了你心目中的平行线?
生1:第1幅、第5幅、第7幅。
生2:就第1幅
生3:1和5
师:看来,同学们对平行线都有自己的认识。到底你的想法对不对呢?,学完这节课后,相信你一定能得到一个肯定的答案。
2、充分体验,探讨本质
师:那么数学上,究竟什么是平行线呢?
我们来看:
窗户这两条直直的边我们可以看成是两条线段,这条线段如果向两端无限延伸、延伸。闭上眼睛想象一下,你看到的两条直线会怎样?会相交吗?
生:不会
师:都说眼见为实,这两条直线我看到的部分的确是不相交的,可是无限延伸之后我看不到,你凭什么说他们永远不会相交呢?
生1:因为延长是不会弯过来的。
生2:他们不会越来越近,最后靠在一起。
生3:它们之间的宽度始终不会变的。
师:宽度一样,其实就是说他们的距离处处相等。(课件验证)
因为他们的距离处处相等,无限延伸之后始终保持着这样的距离,所以,他们永远不会相交。
3、提升概念,再次判断
(板书并口述:永不相交的两条直线相互平行)
师:两条直线相互平行,我们也可以说其中一条就是另一条的平行线。
如果我们把两条直线分别标上名字,ab和cd,我们就说直线ab平行于直线cd,记作ab∥cd
师:我现在如果把这两条直线都斜过来,现在他们相互平行吗?
生:平行的。
师:为什么?
生:因为他们永不相交。
师:我们回头再来看刚才的8幅图。
⑴你能利用刚才学习的概念,找出这里的平行线吗?要说出充分的理由。
(重点讨论学生初次判断错误的、有争议的或不敢肯定的。是平行线,为什么是;不是,又为什么。使学生对平行的认识更加深刻)
⑵指图⑦只有一条直线,你能帮他找一天和他平行的直线吗?
生:图1
师:上面一条还是下面一条
生:两条都和图7的直线平行
4、生活中的平行线
师:这些直线是相互平行的,生活中你还能找到这样的平行线吗?
生1:黑板的上面和下面
师:是的,黑板的对边是相互平行的
生2:桌子的这两条边是相互平行的
师:你指桌子的对边是相互平行的吧,我希望同学们能表达得清楚些。
师:高老师这里还有一些图片,你能从中找到平行线吗?
生1:那幅画的对边是相互平行的
生2:楼梯扶手的两条边是相互平行的
生3:护栏竖的和竖的是相互平行的
师:是的,现在再来看看这里
生1:爬干都是平行的
生2:瓷砖的对边是平行的
生3:花坛的对边是平行的
师:看来生活中的平行线还真不少。有个小朋友叫淘气,他发现所有的窗户都太像了,没有一点儿创意。于是,他设计了这样的新型窗户。
师:你能接受淘气的设计吗?为什么?
生1:不同意,因为这样的话,窗户就无法移动了。
生2:如果窗户往右移就会掉下来。
师:看来,平行不仅美观,还很有用。
刚才同学们找到的都是静止的,现在让我们看看运动中的平行线。
每周一我们都要举行升国旗仪式。国旗的上边从这里平移到了这里,他们是相互平行的。
师:再看看这副图。箭头从这里平移到这里。同学们,线段hg一开始在这里,平移后到了h1g1,线段hg和线段h1g1平行吗?那你能从平移前后的箭头中,找出类似的相互平行的线段吗?
生:线段ad平行于线段a1d1
二、动手画平行线
1、师:现在同学们都认识了平行线,你能在白纸上画平行线吗?
请同学们拿出白纸,看第一题,高老师已经给你们画好了一条直线,现在你能画出它的平行线吗?
注意:你在画的时候想一想,按照你的画法能保证一定平行吗?
生:动手操作
展示:1、量距离。2、沿着一把尺的两边画。3、直尺平移
师:画这条线的平行线,可以画几条啊?
生:无数条
师:现在,你对这三种方法有什么想说的吗?
生:(说说各种方法的局限性)
师:看来每种方法各有各的有点和缺点,因此我们在画平行线的时候,要选择最合适的方法。
2、师:现在请同学们选择合适的方法完成第二题。
教师掩饰直尺平移法,
注意点:1、对2、靠3、移4、画
2、师:现在先请同学们在纸上画任意一条直线。
生:……
师:现在请同桌交换白纸,给同桌画的直线画一条平行线。要求先一个人画另一个看,看同桌画得对不对,然后再交换,听明白我的意思了吗?好,开始。
三、总结,交流
学了这节课后,你对平行线有什么新的认识吗?随着学习的不断深入,我们对平行的认识也会越来越深刻。
四、拓展
师:请同学们看这两条线,它们相互平行吗?
师:它们都在长方体的哪一个面上?
师:请同学们注意(转动盒子,使两直线异面)
师:这两条直线会相交吗?那它们平行吗?
那你觉得我们在说两直线平行时,是不是还应该加一个前提条件啊?
概括:在同一平面内,永不相交的两条直线相互平行。
[板书设计]
平移与平行
平移平行
苏教版四年级数学下教案篇5
教学目标:
●学生对除数十位上的数较小,个位上的数又不接近整十数的除法,学会灵活运用试商方法。
●初步培养学生观察、比较、灵活运用知识的能力。
教学重点和难点:学会灵活运用试商方法。
教学过程:
一、复习沟通。
1.让学生口算。
145 158 164 254 245 263 156 147 156+15 258-25
2.在下面的里填上<或>。
256 160 159 120
3.笔算下面各题。
33)2 8 0 38)1 8 0
独立试做,反思做法,达到灵活运用
让学生观察复习3得两道题是用什么方法试商的?各有什么特点。
二、探究新知
1、学习例4。
(1)出示例4:学校礼堂每排有26个座位,四年级共有140人,可以坐满几排?还剩几人?
(2)引导学生根据问题列出算式14026=
(3)让学生利用学过的`试商方法进行试商。完成后说说有什么感觉?
(4)小组讨论有没有别的试商方法。然后进行小组汇报交流。
(5)教师把学生说的几种情况板书,让他们比较那种方法简便一些,根据题目的特点灵活运用,选择合适你自己的试商方法。
学生观察、比较哪一种方法简便些?
2、引导学生认真观察例题和做一做的题目中除数有什么特点?这类题目用什么方法试商简便些?
使学生认识到:遇到除数是14、15、16、24、25、26商是一位数的除法,可以利用口算直接想出商几,这样试商比较简便。
三、练习
练习十五第512题
第5题,全班共同练习,订正时,让学生说说是怎样想的。
第6题,运用所学知识解决解决实际问题。练习时,让学生独立分析解决问题。对有困难的学生及时给予帮助。做完后,请学生说一说解决问题的过程,并引导讨论两题之间有什么联系?
第7~11题,实际应用的题目。学生通过计算解决实际问题,既巩固了计算的方法又体会了计算的意义和作用。
第12题,是开放题。让学生自主选择条件,独立解答,再互相交流思路。
四、总结。(略)
苏教版四年级数学下教案篇6
教学背景:
统计是数学的一个重要的思想方法,它通过对数据的收集、整理、描述和分析以及对事件发生可能性的刻画,来帮助人们做出合理的推断和预测。进而形成尊重事实、用数据说话的科学态度。《数学课程标准》非常重视“统计与概率”,并且指出在教学“统计”要从传统上比较注重统计图表有关知识点的教学转向重视学生对数据统计过程的体验,学会一些简单的收集、整理和描述数据的方法,认识统计的作用和意义。根据一年级学生的年龄特点,我确定本课(人教版一年级下册第94页例2)的教学目标如下,
教学目标:
1.使学生在自己喜欢的情境中学习数据整理,激发学习兴趣,感知数学在生活中的作用。
2.使学生感受、经历数据的整理过程,初步认识统计图和统计表,能正确填写统计图和统计表,能从中获得简单统计的结果。
3.使学生能使用各种统计的方法以及“正“字的统计方法统计数据。
4.初步培养学生的有序观察与思考的习惯和数学应用的意识,体验与同伴合作的欢乐。
教学重点:
使学生初步学会收集和整理数据,初步认识统计图和简单的统计表。
教学难点:
“正“字的统计方法。
情境描述:
方案一为:按照课本例2提供的情境进行。统计喜欢哪种颜色的花的人数。导入过程:六一儿童节到了,小朋友们正在用鲜花来装扮他们的教室,这里有哪几种颜色的花?你喜欢哪种颜色?然后对喜欢各种颜色的花的人数进行统计。(评析:学生学习比较被动,不知道为什么要对喜欢哪种颜色的花进行统计,学生兴趣并不高。)
方案二为:统计喜欢哪种活动的人数。教学片断如下
师:六一儿童节就要到了,我们班要搞一个活动。这里有四项活动,它们分别是“强凳子、拍皮球、夹弹子、考考你”(这是我了解到的孩子喜欢的一些活动,为了激起孩子的兴趣,我选了一些他们普遍喜欢的活动让他们选择。我把这些活动写在黑板上),这些活动你喜欢吗?
学生一下子来劲了,齐刷刷的说:喜欢
师:你最喜欢哪个活动呢?
我环视了一下四周,孩子们都迫不及待的要说出口。
我停了停又说:请把你最喜欢的一个活动写在老师发的纸条上,注意只能写上你最喜欢的一个。孩子们很快写好了,然后由组长收起来。(评析:给孩子神秘感,使得孩子更期待下面的学习活动,由“要他学”一下子转变成“他要学”了。)
师:现在老师想利用手里的这些纸条来知道,选哪个活动的人最多,那么这个活动将作为我们班六一儿童节时的一个活动。我该怎么办呢,请你帮老师想想办法吧!
怕几个孩子没能听清楚,我又说了一次:我怎么利用这些纸条知道,选哪个活动的人最多?
孩子们开始动起了脑筋,他们也遇到了问题。过了一会,一个孩子举起了手。
生1:你可以看一看纸条,看看哪个选的人最多就可以了。
师:是一张张看过来吗?
生1:嗯
师:唉!这个小朋友的方法好吗?
生2:我觉得不太好,这么多纸条怎么看得清楚,可能看了就忘了。
师:你说得很有道理,老师也是这么想的。那么有没有更好的方法了。
生3:我们可以做一下记录。
师:怎么记录?
生3:用打钩的方法。看一看选的是那个活动就在哪个活动下打钩。
师:你这个方法真不错。其他小朋友呢,你们用什么方法来记录呢?请小朋友们四人小组讨论一下可以怎样记录。学生开始讨论。(采用小组合作讨论的方法,使学生在积极主动学习的课堂中享受到自己学会知识的愉悦)
师:请各小组派代表说一说,你们准备用什么方法记录。
方法有:打圆,打三角形,打五角星,划横的,写正字。
讨论好了,我叫孩子们在准备好的草稿纸上跟着我把这几个活动写上。我在黑板上写了一组。然后叫了三个分别是用打钩,划横,写正字的学生上黑板统计,其他学生在自己的草稿本上统计。老师将纸条上的活动念一遍,学生用自己喜欢的方法记录、整理数据。
师:记录方法和符号没有统一要求,同学们喜欢用什么符号就用什么符号,那谁能用更直观、更形象的方法来表示呢?
学生小组活动:每组拿出一张空白虚线框图,进行制作统计图。小组汇报并展示统计图(评析:通过学生实践经验来学习知识,更体现数学源于生活从而引发学生更强烈的求知欲望)
教学总结:
方案二的课堂气氛明显好于方案一。方案一中,孩子们的反应显得非常被动,纯粹是为了学数学知识而在上课,孩子们显得难以接受。而方案二,学生就显得非常活跃主动了。方案一的导入,为什么学生的学习积极性没有呢?追其原因主要是:首先,孩子们不明白,为什么要统计这些喜欢不同颜色的花的人数,教材提供的情境不够贴近实际,没有展示出为我什么要进行统计,统计了是干什么,纯粹像是为了要学习统计这一内容而设计的一个情境。再次:虽然课本的例题提供了具体的情景,但孩子们兴趣不大,因此不能吸引学生的眼球。其次:在选择最喜欢哪种颜色的花时,可选性不大。因为这些花看起来都差不多,因此孩子们不知道到底选哪个好,选的时候也只是随便定了一个。而方案二就不同了:首先,这些活动孩子们都非常喜欢,看到六一节要搞这些活兴趣一下子来了,都迫不及待的想要告诉大家。其次:孩子们清楚统计的原因,要选出六一节的活动就要选择喜欢的人最多的那个,所以要进行人数统计。并且可选性要比例题的大。
会计实习心得体会最新模板相关文章: