有美篇范文网 >工作计划

实数1教案8篇

教案可以帮助教师设计教学策略和方法,提供多样化的教学体验和互动机会,编写教案可以促使我们深入思考教学目标和评价标准,使教学更加有针对性和明确性,有美篇范文网小编今天就为您带来了实数1教案8篇,相信一定会对你有所帮助。

实数1教案8篇

实数1教案篇1

教学目的

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

教学分析

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

教学过程

一、复习

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

二、新授

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数统称为实数。

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

例2,判断题:

(1)任何实数的偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

三、练习

p148 练习:3、4、5、6。

四、小结

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

五、作业

1、p150 习题A:3。

2、基础训练:同步练习1。

实数1教案篇2

教学目标:

知识与技能目标:

1.掌握矩形的概念、性质和判别条件.

2.提高对矩形的性质和判别在实际生活中的应用能力.

过程与方法目标:

1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.

2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想.

情感与态度目标:

1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.

教学重点:

矩形的性质和常用判别方法的理解和掌握.

教学难点:

矩形的性质和常用判别方法的综合应用.

教学方法:

分析启发法

教具准备:

像框,平行四边形框架教具,多媒体课件.

教学过程设计:

一.情境导入:

演示平行四边形活动框架,引入课题.

二.讲授新课:

1.归纳矩形的定义:

问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答.)

结论:有一个内角是直角的平行四边形是矩形.

八年级数学上册教案2.探究矩形的性质:

(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)

结论:矩形的四个角都是直角.

(2).探索矩形对角线的性质:

让学生进行如下操作后,思考以下问题:(幻灯片展示)

在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.

①.随着∠α的变化,两条对角线的长度分别是怎样变化的?

②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?

③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?

(学生操作,思考、交流、归纳.)

结论:矩形的两条对角线相等.

(3).议一议:(展示问题,引导学生讨论解决.)

①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.

②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?

(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”.)

矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.

例解:(性质的运用,渗透矩形对角线的“化归”功能.)

如图,在矩形abcd中,两条对角线ac,bd相交于点o,ab=oa=4

厘米.求bd与ad的长.

(引导学生分析、解答.)

探索矩形的判别条件:(由修理桌子引出)

(1).想一想:(学生讨论、交流、共同学习)

对角线相等的平行四边形是怎样的四边形?为什么?

结论:对角线相等的平行四边形是矩形.

(理由可由师生共同分析,然后用幻灯片展示完整过程.)

(2).归纳矩形的判别方法:(引导学生归纳)

有一个内角是直角的平行四边形是矩形.

对角线相等的平行四边形是矩形.

三.课堂练习:

(出示p98随堂练习题,学生思考、解答.)

四.新课小结:

通过本节课的学习,你有什么收获?

(师生共同从知识与思想方法两方面小结.)

五.作业设计:p99习题4.6第1、2、3题.

板书设计:

4.矩形

矩形的定义:

矩形的性质:

前面知识的小系统图示:

三.矩形的判别条件:

例1

课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。

实数1教案篇3

教学目标

1.知道有效数字的概念;

2.会按要求进行近似数的运算

教学过程

一、创设情境,导入新课

1.什么叫实数?实数怎么分类?

2.在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?

3.做一做

如果正方形abcd的面积为3平方厘米,正方形efgh的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?

二、合作交流,探究新知

1 交流上面问题的做法

(1)估计同学们会有两种做法:

用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)

(2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:

如果没有两种做法,也要想办法引出这两种做法

两种做法的答案不同,哪一种答案正确呢?

请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。你发现了什么?

这时两种做法的答案就一样了。

从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。

2、引入有效数字的概念

在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。什么叫近似数的有效数字呢?

先思考:0.010256精确到小数点后面第三位,等于多少呢?

0.0102560.0103

近似数0.0103有三个有效数字1、0、3

现在你能说说,什么叫近似数的有效数字吗?

从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。

考考你:1 近似数0.03350有几个有效数字,分别是______________________.

2 125万保留两个有效数字等于__________

3 有_______个有效数字。

3、怎样进行近似值的运算?

在近似数的加减法运算中,如果被减数与减数相差较大,那么参与运算的最大数多取一位有效数字,其余的数取到与最大数最低位相对应的那一位止。

例1 计算: 27.65+0.02856+-3.414(保留三个有效数字)提醒:最后一位数字为0,不能省略。

(2)在进行近似数的乘法和除法运算中,参与运算的每一个数应多取一位有效数字。

例2 在上面做一做问题中 ,如果分别以正方形abcd、efgh的边长作为宽与长,做一个长方形,那么这个长方形的面积大约是多少平方厘米(保留三个有效数字)

考考你:1.计算(精确到小数点后面第二位)(1),(2)

2.计算(保留三个有效数字)(1) (2)

三、应用迁移,巩固提高

例3(1)一个正方形的体积变为原来的27倍,它的棱长变为多少倍?表面积变为原来的多少倍?

变式:上面问题中27倍改为:8倍,其他不变

例4 已知求a+b的值。

例5 设a、b为实数,且求的值。

四、反思小结,拓展提高

这节课,你认为最重要的是什么?

1.有效数字的概念;2.实数的近似数的计算

实数1教案篇4

学习目标:

1.了解算术平方根的概念,会用根号表示数的算术平方根;

2. 会用平方运算求某些非负数的算术平方根;

3.能运用算术平方根解决一些简单的实际问题.

学习重点:

会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题.

学习难点:

区别平方根与算术平方根

掌握本章基本概念与运算,能用本章知识解决实际问题.

【知识与技能】

【过程与方法】

通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中.

【情感态度】

领悟分类讨论思想,学会类比学习的方法.

【教学重点】

本章知识梳理及掌握基本知识点.

【教学难点】

应用本章知识解决实际与综合问题.

一、知识框图,整体把握

【教学说明】

1.通过构建框图,帮助学生回忆本节所有基本概念和基本方法.

2.帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等.

二、释疑解惑,加深理解

1.利用平方根的概念解题

在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数.

例1已知某数的平方根是a+3及2a-12,求这个数.

分析:由题意可知,a+3与2a-12互为相反数,则它们的和为0.解:根据题意可得,a+3+2a-12=0.

解得a=3.

∴a+3=6,2a-12=-6.

∴这个数是36.

【教学说明】

负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例.

2.比较实数的大小

除常用的法则比较实数大小外,有时要根据题目特点选择特别方法.

实数1教案篇5

教学目标(知识、能力、教育)

1.理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。

2.复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。

3.会用电子计算器进行四则运算。

教学重点 实数的加、减、乘、除、乘方、开方的混合运算,绝对值、非负数的有关应用。

教学过程

一:【前预习】

(一):【知识梳理】

1. 有理数加、减、乘、除、幂及其混合运算的运算法则

(1)有理数加法法则:

①同号两数相加,取________的符号,并把__________

②绝对值不相等的异号两数相加,取________________的符号,并用

____________________。互为相反数的两个数相加得____。

③一个数同0相加,__________________。

(2)有理数减法法则:减去一个数,等于加上____________。

(3)有理数法则:

①两数相乘,同号_____,异号_____,并把_________。任何数同0相乘,

都得________。

②几个不等于0的数相乘,积的符号由____________决定。当______________,

积为负,当_____________,积为正。

③几个数相乘,有一个因数为0,积就为__________.

(4)有理数除法法则:

①除以一个数,等于_______________________.__________不能作除数。

②两数相除,同号_____,异号_____,并把_________。 0除以任何一个

____________________的数,都得0

(5)幂的运算法则:正数的任何次幂都是___________; 负数的__________是负数,

负数的__________是正数

(6)有理数混合运算法则:

先算________ ,再算__________,最后算___________。

如果有括号,就_______________________________。

2.实数的运算顺序:在同一个算式里,先 、 ,然后 ,最后 .有括号时,先算 里面,再算括号外。同级运算从左到右,按顺序进行。

3.运算律

(1)加法交换律:_____________。 (2)加法结合律:____________。

(3)交换律:_____________。 (4)乘法结合律:_ ___________。

(5)乘法分配律:_________________________。

4.实数的大小比较

(1)差值比较法:

>0 > , =0 , <0 <

(2) 商值比较法:

若 为两正数,则 > > ; < <

(3)绝对值比较法:

若 为两负数,则 > < < >

(4)两数平方法:如

5.三个重要的非负数:

(二):【前练习】

1. 下列说法中,正确的是( )

a.m与—m互为相反数 b. 互为倒数

c.1998.8用科学计数法表示为1.9988×102

d.0.4949用四舍五入法保留两个有效数字的近似值为0.50

2. 在函数 中,自变量x的取值范围是( )

a.x>1 b.x<1 c.x≤1 d.x≥1

3. 按?顺序-12÷4=,结果是 。

4. 的平方根是______

5.计算

(1) 32÷( -3)2+- ×(- 6)+ ;(2)

二:【经典考题剖析】

1.已知x、y是实数,

2.请在下列6个实数中,计算有理数的和与无理数的积的差:

3.比较大小:

4.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是 ;320的个位数字是 ;

5.计算:

(1) ;(2)

三:【后训练】

1.某公司员工分别住在a、b、c三个住宅区,a区有30人,b区有15人,c区有10人,

三个住宅区在同一条直线上,位置如图所示,该公司的接送车打算在此间设一个停靠站,为使所有员工步行到停靠站的路程之和最小,

那么停靠站的位置应设在( )

a.a区; b.b区; c.c区; d.a、b两区之间

2.根据国家税务总局发布的信息,20xx年全国税收收入完成25718亿元,比上年增长

25.7%,占20xx年国内生产总值(gdp)的19%。根据以上信息,下列说法:①20xx年全国税收收入约为25718×(1-25.7%)亿元;②20xx年全国税收收入约为 亿元;③若按相同的增长率计算,预计20xx年全国税收收入约为25718×(1+25.7%)亿元;④20xx年国内生产总值(gdp)约为 亿元。其中正确的有( )

a.①④;b.①③④;c.②③;d.②③④

3.当 < < 时, 的大小顺序是( )

a. < < ;b. < < ;c. < < ;d. < <

4.设是大于1的实数,若 在数轴上对应的点分别记作a、b、c,则a、b、c三点在数轴上自左至右的顺序是( )

a.c 、b 、a;b.b 、c 、a ;c.a、b、 c ;d.c、 a、 b

5.现规定一种新的运算“※”:a※b=ab,如3※2=32=9, 则 ※ ( )

a. ;b.8;c. ;d.

6.火车票上的车次号有两种 意义。一是数字越小表示车速越快:1~98次为特快列车;101~198次为直快列 车;301~398次为普快列车;401~498次为普客列车。二是单、双数表示不同的行驶方向,比如单数表示从北京开出,则双数表示开往北京。根据以上规定,杭州开往北京的某一趟直快列车的车次号可能是( )

a.20;b.119;c.120;d.319

7.计算:

(1)( - )2; ⑵( + )( - );⑶

(4) ;(5)

8. 已知: ,求

9. 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,……这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出

10.小王上周五买进某公司股票1000股,每股25元,在接下的一周交易日内,小王记下该股票每日收盘价相比前一天的涨跌情况:(单位:元)

星期一二三四五

每股涨跌+2-0.5+1.5-1.8+0.8

根据表格回答问题

(1)星期二收盘时,该股票每股多少元?

(2)本周内该股票收盘时的最高价、最低价分别是多少?

(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费。若小王在本周五以收盘价将传全部股票卖出,他的 收益 情况如何?

四:【后小结】

实数1教案篇6

教学难点:绝对值。

教学过程:

一、 复习:

1、实数分类:方法(1) ,方法(2)

注:有限小数、无限循环小数是有理数,可化为分数;无限不循环小数是无理数

例1判断:

(1) 两有理数的和、差、积、商是有理数;

(2) 有理数与无理数的积是无理数;

(3) 有理数与无理数的和、差是无理数;

(4) 小数都是有理数;

(5) 零是整数,是有理数,是实数,是自然数;

(6) 任何数的平方是正数;

(7) 实数与数轴上的点一一对应;

(8) 两无理数的和是无理数。

例2 下列各数中:

-1,0, , ,1.101001 , , ,- , ,2, .

有理数集合{ …}; 正数集合{ …};

整数集合{ …}; 自然数集合{ …};

分数集合{ …}; 无理数集合{ …};

绝对值最小的数的集合{ …};

2、绝对值: =

(1) 有条件化??

例3、①当1

②a,b,c为三角形三边,化简 ;

③如图,化简 + 。

(2) 无条件化??

例4、化??

解:步骤①找零点;②分段;③讨论。

例5、①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为

②当-3

例6、阅读下面材料并完成填空

你能比较两个数20042005和20052004的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,。。。。这些简单的情况入手,从中发现规律,经过规纳,猜想出结论。

(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填“>、=、

①12 21 ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76

⑦78 87

(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是

(3)根据上面的归纳结果猜想得到的一般结论是: 20042005 20052004

练习:(1)若a

(3)若 ;(4)若 = ;

(5)解方程 ;(6)化简: 。

二、 小 结:

三、作 业:

四、教后感:

实数1教案篇7

了解无理数和实数的意义,会对实数进行分类,了解实数的绝对值和相反数的意义.

重点

理解实数的概念.

难点

运用所学知识解决问题.

一、创设情境,引入新课

师:请同学们使用计算器,把下列有理数写成小数的形式,你有什么发现?

3,-35,478,911,1190,59

生1:

生2:这些有理数都可以写成有限小数或者无限循环小数.

二、讲授新课

师:很好,其实,任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.

师:很多数的平方根和立方根都是无限不循环小数,无限不循环小数叫做无理数.

例如:2、-5、32、33等都是无理数.

π 14159265……也是无理数.

师:有理数和无理数统称实数.

实数有理数有限小数或无限循环小数无理数无限不循环小数

师:像有理数一样,无理数也有正负之分.

无理数正无理数2,33,π,……负无理数-2,-33,-π,……

师:由于非0有理数和无理数都有正、负之分,所以实数可以这样分类:

实数正实数正有理数正无理数0负实数负有理数负无理数

师:每个有理数都可以用数轴上的点来表示,无理数也可以用数轴上的点来表示.

请大家观看大屏幕:

如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点o′,点o′的坐标是多少?

师:从图中可以看出,oo′的长是多少?

生1:这个圆的周长为π.

师:o′的坐标是多少?

生2:o′的坐标是π.

师:所以无理数π可以用数轴上的点表示出来.

师:如何在数轴上表示±2呢?

学生活动:小组合作交流.

教师活动:巡视、检查,适时点拨.

师生共同完成:

归纳:每一个无理数都可以用数轴上的一个点表示出来.

即数轴上的点有些表示有理数,有些表示无理数.

师:实数与数轴上的点有何关系?

师:实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.

师:平面直角坐标系中的点与有序实数对之间也是一一对应的.

右边的点表示的实数总比左边的点表示的实数大,当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合实数.

师:请同学们做题:

2的相反数是________,

-π的相反数是________,

0的相反数是________,

|2|=________,|-π|=________,

|0|

师:同学们有什么发现?

生:与有理数一样.

师生共同归纳:

数a的相反数是-a(a表示任意一个实数).

一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是

?例】(1)分别写出-6,π的相反数;

(2)指出-5,1-33分别是什么数的相反数;

(3)求3-64的绝对值;

(4)已知一个数的绝对值是3,求这个数.

解:(1)因为-(-6)=6,-(π)π,所以,-6,π的相反数分别为6,π.

(2)因为-(5)=-5,-(33-1)=1-33,所以,-5,1-33分别是5,33-1的相反数.

(3)因为3-64=-364=-4,所以|3-64|=|-4|

(4)因为|3|=3,|-3|=3,所以绝对值为3的数是3或

三、随堂练习

课本第56页第1、2、3题.

四、课堂小结

通过本节课的学习,同学们有哪些收获?请与同伴交流.

本节课通过对无理数的学习,使学生对数的认识又提升到一个新的层次.通过举一些数让学生对其进行分类,即按有理数和无理数归类,使他们对这两类数进行区分,更深入地认识这两类数的区别.

第2课时实数的运算法则

实数的运算法则.

重点

掌握实数的运算法则.

难点

实数运算法则的正确应用.

一、创设情境,引入新课

师:有理数的运算法则是什么?

生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.

二、讲授新课

师:很好.有理数运算法则仍适用于实数,请大家看几个题目:

展示课件:

?例1】计算下列各式的值:

(1)(3+2)-2;(2)33+

学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.

教师活动:巡视、指导.

师生共同完成:

(1)(3+2)-2=3+(2-2)(加法结合律)

=3+0

=3

(2)33+23

=(3+2)3分配律

=53

师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.

?例2】计算(结果保留小数点后两位):

(1)5+π;(2)3•

学生尝试独立计算,一学生上黑板板演.

教师巡视、纠正.

师生共同完成:

(1)5+?

≈+

(2)3•2

≈×

三、随堂练习

课本第56页第4题,第57页第4、5、6题.

四、课堂小结

通过本节课的学习,你有哪些收获?

实数1教案篇8

教学目标

1、通过实际操作,了解什么叫做轴对称变换。

2、如何作出一个图形关于一条直线的轴对称图形。

教学重点

1、轴对称变换的定义。

2、能够按要求作出简单平面图形经过轴对称后的图形。

教学难点

1、作出简单平面图形关于直线的轴对称图形。

2、利用轴对称进行一些图案设计。

教学过程

Ⅰ、设置情境,引入新课

在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题。在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样。

将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形。

准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕。再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的

这节课我们就是来作简单平面图形经过轴对称后的图形。

Ⅱ、导入新课

由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分。

类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案。

对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方

向和位置的变化在图案设计中的奇妙用途。

下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下。

结论:由一个平面图形呆以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;

连结任意一对对应点的线段被对称轴垂直平分。

我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换。

成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到。一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的

取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母e,用小刀把画出的字母e挖去,拉开“手风琴”,你就可以得到以字母e为图案的花边。回答下列问题。

(1)在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?说说你的理由。

(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?三个图案为一组呢?为什么?

(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做。

注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些。

Ⅲ、随堂练习

(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2)。

(1)猜一猜,将纸打开后,你会得到怎样的图形?

(2)这个图形有几条对称轴?

(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?

答案:(1)轴对称图形。

(2)这个图形至少有3条对称轴。

(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形。

(二)回顾本节课内容,然后小结。

Ⅳ、课时小结

本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案。在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案。

会计实习心得体会最新模板相关文章:

读后感1百字通用8篇

开学第1课心得体会8篇

五1班级工作计划参考8篇

演讲英语1分钟演讲稿通用8篇

红楼梦1千字读后感8篇

积极分子1季度思想汇报通用8篇

哈佛家训1的读后感8篇

事业单位1到8工作报告5篇

蚯蚓的日记1读后感8篇

童年1到10读后感推荐8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    100107

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。